In my benchmark, I just went along and made lines. I love art, and when I do it, I do anything and I see where it takes me. That's how I feel like the best artwork comes from.

I did kinda change it btw.
Task 2.

Slope-intercept form

$y=m x+b$ form

What is the process for graphing an equation in slope-intercept form on a coordinate plane?

Find the y-intercept $=(b)$, plot it, then find the slope $=(\mathrm{m})$, use rise over run from the slope, and lastly connect the two points.

What's the process for graphing an equation in point-slope form on a coordinate plane?

First, you will have to take out the known slope and also point from the equation which is $y-y 1=m(x-x 1)$. Then the slope and known point would be $(x 1, y 1)$. Then plot the point and use the slope to find the way the line increases.

What is the process for finding the equation of a horizontal line when given a line on graph paper?

Horizontal lines will always have a slope of 0 . In $y=m x+b$, the slope (m) is 0 . Then the equation is $y=b$. Because the b is now the y-coordinate of the y-intercept.

What is the process for graphing a horizontal line on a coordinate plane?

Like I said before, they will always have the slope of 0 . The place where the x and y meet is the origin.

Can you explain the process for finding the equation of a vertical line when given a line on graph paper?

Usually, the line is parallel to the y-axis which is $x=a$. Also the slope is usually undefined/(0) and or it's infinity.

The process for graphing a vertical line on a coordinate plane:

It is basically a straight line that goes bottom to top or top to bottom. It has to have the same x-coordinate value.

What's the differences between the slope and y-intercept of parallel lines?

They have to have the same slope but different y -intercepts.

Differences between the slope and y-intercept of perpendicular lines:

They have to have opposite-reciprocal slopes.

Here is my desmos version

Out of this project, I feel like I did the lines well. I liked that this was kind of an art project and I'm a person who really likes art so I was excited to do it. I do feel like this benchmark I did better on than the other one from last quarter. I learned more and was mostly on time for it. I wouldn't say it's easy, but I will say that it's more fun and interesting than Q1's benchmark. It made me learn more about slope and y-intercepts and I kind of like this subject now more than before.

