Algebra 1, C Band

Algebra 1, Quarter 2 Benchmark: Make Your Own Design!

Introduction:

In this benchmark project, I had to make a design on paper and transfer it to lined paper. After that, I had to explain the different types of lines and equations and then show how I found each line. After all of that, I input it into desmos an online graphing system. I chose this shape or design I made because I like how the lines meet to make a symmetrical shape.

1. Slope-intercept form

Teacher's Name: Ms. Gasser

Algebra 1, C Band

For this example, we will use line P. Find the y-intercept this is where the line crosses the y-axis $=b$ of the equation $y=M X+b$. Plot the y-intercept. The point will be $(0, b)$ on our paper we can see line P goes through the y -intercept at point $(0,0)$ or the origin. Find the slope $=\mathrm{m}$ of the equation $\mathrm{y}=\mathrm{MX}+\mathrm{b}$ to do this we look at rise over run. Make a single step from one point to another point on our graph I will use $(0,0)$ to $(1.5,2)$ using the rise 1.5 the amount on the y we go up, and run the amount we go horizontal on the x from the slope. (Make sure you go up to the right if positive and down to the right if negative.) Connect those two points with your line to get $(\mathrm{y}=1.5 / 2 \mathrm{x})$ remember our b is 0 so we don't even have to write it.

2. Point-slope form

To graph point-slope form $(y-y l=m(x-x 1))$, first plot the point $(x 1, y 1)$. Then, use the slope (m) to find a second point on the line. Finally, draw a straight line through the two points. Then, use the slope to find a third point. We will use line O. Starting at the origin the slope of line O is $(2 / 1.5)$, so move up 2 and right 1.5 . The new point is $(2,1.5)$. Plot this point. Finally, draw a line through these two points.

Ex. Graph $y-7=-2 / 1.5(x-1.5)+2$

3. Horizontal lines

Horizontal lines have a slope of zero. This means no rise value. To graph, a horizontal line in the coordinate system, use the equation $\mathrm{y}=\mathrm{k}$, where k gives the point on the $y . y$-axis that the line will intersect.to show this we will use line F where $y=-4$ because there are no increasing or decreasing values this stays the same.

Teacher's Name: Ms. Gasser

Algebra 1, C Band

4. Vertical lines

Vertical lines go up and down and have a slope that is undefined this means no y-axis. Graphs of horizontal lines are parallel to the x-axis. Graphs of vertical lines are parallel to the y -axis. Let's use the equation $\mathrm{x}=\mathrm{k}$, where k gives the point on the x . x-axis that the line will intersect.to show this we will use line g where $x=-3$ because there are no increasing or decreasing values this stays the same.

5. Parallel lines

Parallel lines are straight lines that never meet each other no matter how long we extend them. Line e is parallel to line f , and line h is parallel to line g .

6. Perpendicular lines

Perpendicular lines are lines that intersect at a right (90 degrees) angle. They have opposite reciprocals this means their slope is completely opposite to one another but the y-int doesn't matter because they will intercept always. An example of these lines r and p.there equations are $\mathrm{y}=-2 / 1.5 \mathrm{x}$ and for p since they are opposite are just flipped being. $\mathrm{y}=1.5 / 2 \mathrm{x}$. There is no b because these lines pass through the origin.

Now I am going to implement these types of equations into graphing.

Teacher's Name: Ms. Gasser

To look at these in a more clean and simplistic form I have inserted these equations into desmos.

Teacher's Name: Ms. Gasser

Reflection

I feel like during this project I managed my time really well asking questions constantly so I never got stuck. I learn how to talk about my mathematical thinking from the last 2 benchmarks which is a very useful skill for teaching myself. In this project, I learned how to graph lines with starting and ending points. Overall, I really did enjoy this benchmark because I've never done anything like this before.

This is my artistic version.

Teacher's Name: Ms. Gasser

Algebra 1, C Band

